# **Inorganic Chemistry**

# Ligand-Triplet-Fueled Long-Lived Charge Separation in Ruthenium(II) Complexes with Bithienyl-Functionalized Ligands

Marek B. Majewski,<sup>†</sup> Norma R. de Tacconi,<sup>‡</sup> Frederick M. MacDonnell,<sup>\*,‡</sup> and Michael O. Wolf<sup>\*,†</sup>

<sup>†</sup>Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

<sup>‡</sup>Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States

Supporting Information

**ABSTRACT:** Ruthenium(II) polypyridyl complexes with pendant bithienyl ligands exhibiting unusually long-lived ( $\tau \sim 3-7 \ \mu s$ ) charge-separated excited states and a large amount of stored energy ( $\Delta G^{\circ} \sim 2.0 \ eV$ ) are reported. A long-lived ligand-localized triplet acts as an energy reservoir to fuel population of an interligand charge-transfer state via an intermediate metal-to-ligand charge-transfer state in these complexes.

New methods for efficiently converting solar energy to use-able chemical energy are urgently needed.<sup>1</sup> Approaches that mimic photosynthesis<sup>2</sup> rely on achieving long-lived chargeseparated (CS) states via multistep, vectorial photoinduced electron transfer.<sup>3</sup> Metal complexes with polypyridyl ligands are ideal for applications in solar energy conversion<sup>4</sup> and artificial photosynthesis<sup>5</sup> owing to their long excited-state lifetimes, redox properties, chemical stability, and excited-state reactivity.<sup>6</sup> Metalto-ligand charge-transfer (MLCT) states of ~2.1 eV are accessible in ruthenium polypyridyl complexes and may act as the gateway to interligand charge-transfer (ILCT) states that further separate the electron-hole pair.<sup>7</sup> Covalently linking donor and/or acceptor moieties to the ruthenium(II) polypyridyl chromophore to give diads or triads can generate ILCT states; however, in most cases, the energy stored ( $\Delta G^{\circ}$ ) is appreciably less than the MLCT energy and is frequently below 1 eV.8 Furthermore, most ILCTs have lifetimes limited to  $\sim 1 \ \mu s.^8$  Combined, these factors limit the utility of these systems in artificial photosynthesis.

The lifetimes of <sup>3</sup>MLCT states can be extended appreciably by excited-state equilibration involving ligands with energetically accessible and long-lived triplet states (<sup>3</sup>LC).<sup>9</sup> Such long-lived MLCT states can, in principle, go on to generate CS (or ILCT) states. Here, we report a system in which a long-lived ligand-localized triplet acts as an energy reservoir to fuel population of an ILCT state with an unusually long lifetime ( $\tau \sim 7 \mu s$ ) and a large amount of stored energy ( $\Delta G^{\circ}$  ca. 2.0 eV) via an intermediate MLCT state.

Our approach is to introduce oligothiophenes as ligands into ruthenium polypyridyl complexes.<sup>10</sup> The role of the oligothiophene is to reductively quench the initially formed ruthenium-(III) species upon photoexcitation, resulting in a CS state where a hole ( $h^+$ ) is localized on the oligothiophene. In addition, reversible energy transfer from low-lying LC states on the conjugated ligand results in an extension of the excited-state lifetime.<sup>9,11</sup>

Conjugated oligomers also provide a route to thin films of these complexes by electropolymerization,<sup>12</sup> allowing applications in photovoltaic devices.

Ruthenium(II) polypyridyl complexes 3-5 incorporate the thienyl- and bithienyl-functionalized diimines 1 and 2 as ligands. Increasing the number of thienyl moieties in the ligand (cf. 3 and 4) and varying the number of conjugated ligands (cf. 4 and 5) shed light on the photophysical behavior of these complexes.



Homoleptic metal complexes 3 and 4 were prepared by reacting 1 or 2 with Ru(DMSO)<sub>4</sub>Cl<sub>2</sub>, and 5 was prepared by the reaction of 2 with Ru(phen)<sub>2</sub>Cl<sub>2</sub> (phen = 1,10-phenanthroline). The absorption spectrum of 3 (Figure 1a) exhibits moderately intense d  $\rightarrow \pi^*$  MLCT bands ( $\lambda_{max} = 450$  nm with a shoulder at  $\lambda_{max} = 420$  nm) and LC bands in the UV region. These spectral features are comparable to those observed for [Ru(phen)<sub>3</sub>][PF<sub>6</sub>]<sub>2</sub> (6; Figure S1 in the Supporting Information, SI).<sup>13</sup> Similar spectra are found for 4 and 5 with an additional intense band at  $\lambda_{max} = 355$  nm, attributed to a bithienyl  $\pi \rightarrow \pi^*$  transition. Furthermore, no significant ground-state electronic interaction between the Ru<sup>II</sup> core and the thienyl moieties is evident from these spectra.

Excitation into the lowest-energy absorption band of 3-5 results in identical emission spectra with  $\lambda_{max} = 596$  nm (Figure 1a), similar to that observed for 6. Quantum yields for 3-5 (Table 1) are comparable to that of  $rac/\Delta/\Lambda$ -Ru(phen)<sub>3</sub><sup>2+</sup> ( $\Phi_{em} = 0.052$ ).<sup>14</sup> Interestingly, emission lifetimes,  $\tau_{em}$  ( $\lambda_{ex} = 453$  nm), vary significantly for the three complexes. By comparison, 6 has an emission lifetime of 523 ns under identical conditions.

The time-resolved transient absorption (TA) differential spectrum of 3 shows spectral features that closely resemble those observed for 6 (Figure 1b).<sup>15</sup> The similarity in emission and TA

Received: August 30, 2011 Published: September 21, 2011



**Figure 1.** (a) Absorption (solid) and uncorrected normalized emission spectra (dashed,  $\lambda_{ex} = 450 \text{ nm}$ ) of 3-5. (b) Differential excited-state TA spectra of 3 (black), 4 (red), 5 (blue), and 6 [Ru(phen)\_3][PF\_6]\_2 (teal) collected 200 ns after excitation. (c) Differential excited-state TA spectra of ligand 2 (black) and 4 collected at longer time regimes (10  $\mu$ M solutions in CH<sub>3</sub>CN purged with argon;  $\lambda_{ex} = 355 \text{ nm}$ ; fwhm = 35 ps). (d) Reductive spectroelectrochemistry of 4 (-0.85 V, 50  $\mu$ M solution in CH<sub>3</sub>CN, black) and differential excited-state spectrum of 4 (red).

Table 1. Photophysical Data

| compound | $\lambda_{\rm em} \ ({\rm nm})^a$ | $\Phi_{ m em}{}^{b,c}$ | $	au_{\rm em} \ (\mu { m s})^{c,d}$ | $	au_{\mathrm{ex}}  (\mu \mathrm{s})^{\mathrm{c},\mathrm{e}}$ |
|----------|-----------------------------------|------------------------|-------------------------------------|---------------------------------------------------------------|
| 1        | 308                               |                        |                                     |                                                               |
| 2        | 405                               |                        |                                     | >10                                                           |
| 3        | 596 <sup>f</sup>                  | $0.047\pm0.005$        | 0.89                                | 0.97                                                          |
| 4        | 596 <sup>f</sup>                  | $0.071\pm0.001$        | 7.4                                 | 6.3                                                           |
| 5        | 596 <sup>f</sup>                  | $0.058\pm0.001$        | 2.9                                 | 2.6                                                           |
| 6        | 600 <sup>f</sup>                  |                        | 0.52                                | 0.53                                                          |

<sup>*a*</sup> Uncorrected, room temperature, CH<sub>3</sub>CN solution. <sup>*b*</sup> Absolute quantum yield at room temperature. <sup>*c*</sup> Samples prepared in air and purged with argon for 30 min. <sup>*d*</sup>  $\lambda_{ex}$  = 453 nm. <sup>*e*</sup>  $\lambda_{ex}$  = 355 nm (fwhm = 35 ps). <sup>*f*</sup>  $\lambda_{ex}$  = 450 nm.

lifetimes (Figure S2 in the SI) for 3 (891 ns vs 973 ns), and similarities to the TA and emission spectra for related species, strongly supports the assignment of the major excited-state species in 3 as a <sup>3</sup>MLCT state. In contrast, TA spectra of 4 and 5 exhibit a broad, multifeatured absorption between 390 and 450 nm, a lower-energy feature at ~450-500 nm, and a broad, low-energy absorbance at ~550 nm (Figure 1b). A ground-state bleach is also observed at 340 nm (t < 100 ns), corresponding to the ground-state bithienyl  $\pi \rightarrow \pi^*$  absorption (Figure S3 in the SI). Evidently, the states observed in the TA spectra of 4 and 5 are quite different from the <sup>3</sup>MLCT state observed for 3 and 6.

It is well established that <sup>3</sup>LC states can equilibrate with <sup>3</sup>MLCT states of comparable energies.<sup>9</sup> The triplet energy of unsubstituted bithiophene is 2.2 eV,<sup>16</sup> close to the <sup>3</sup>MLCT energy (596 nm, 2.08 eV) of 4 and 5, suggesting that equilibration of the <sup>3</sup>LC and <sup>3</sup>MLCT states is possible. The excited-state absorption of 2 at 400 nm (Figure 1c) is coincident with the high-energy band in the TA spectrum of 4 and 5; thus, it is likely that a nonemissive <sup>3</sup>LC state is present in the complexes and is responsible, in part, for the long lifetime of the excited state. This

is further evidenced by the approximately 3-fold decrease in lifetime between 5 and 4, where 5 has only a third of the bithienyl substituents of 4 and thus a smaller "triplet reservoir", an effect previously observed in ruthenium(II) pyrenyl complexes.<sup>17</sup>

It is possible that a CS <sup>3</sup>ILCT state can also equilibrate with the <sup>3</sup>MLCT state, in addition to the <sup>3</sup>LC state, as evidenced by additional bands in the spectra of 4 and 5 that are absent in 2. This <sup>3</sup>ILCT state would form by the reductive quenching of ruthenium(III) by the bithienyl group, giving a <sup>3</sup>ILCT state consisting of a bithienyl cation and an anion either localized on the phen group or possibly delocalized to the amide.

Differential pulse voltammetry (DPV) of 4 shows two waves corresponding to oxidation of the Ru<sup>II</sup> center and bithienyl moieties (first positive-going scan; Figure S7 in the SI). Oxidative polymerization of the bithienyl groups occurs as sequential scans show increasing currents and formation of a yellow film on the electrode (Figure S8 in the SI). In contrast to 6 (first reduction  $\sim -1.35$  V; Figure S9 in the SI), reductive DPV of 4 shows a broad cathodic process with a pronounced anodic peak at -0.9 V assigned to reduction of the substituted phen ligand.<sup>18</sup> Despite the less negative reduction potential in 4, no red shift is observed in the emission spectrum or the MLCT absorption of 4 compared to 6, attributed to the bichromophoric nature of 4.<sup>19</sup> Gibbs free-energy changes for intramolecular electron transfer are  $\sim -14$  kJ mol<sup>-1</sup> (-0.14 eV),<sup>20</sup> indicating that the formation of an intramolecular ILCT state is energetically feasible.

The broadness and poor reversibility of the DPV peaks in 4 makes a definitive assignment of the stored energy,  $\Delta G^{\circ}$ , of the ILCT state impossible. However, its value may be estimated as  $\geq 1.9$  eV. This compares to a calculated value of 2.0 eV in 3 and reveals that it is energetically accessible.

Reductive spectroelectrochemistry of 4 shows three spectral features (Figure 1d), differing substantially from the spectra obtained upon electroreduction of 6 (Figure S11 in the SI). As a result, the spectral features of  $4^-$  are assigned to a substituted phen anion bound to a Ru<sup>II</sup> center. Comparison of the spectrum of  $4^-$  with the TA spectrum of 4 shows significant overlap, suggesting that the excited state is similar to the Ru<sup>II</sup>phen<sup>-</sup> state observed in the spectroelectrochemistry.

Oxidation of 2 with NOPF<sub>6</sub> showed growth of a band between  $\sim$ 375 and 440 nm (Figure S12 in the SI) due to 2<sup>+</sup>. In the TA spectra of 4, some of the high-energy features between 390 and 450 nm may correspond to an oxidized bithienyl moiety, previously shown to absorb at 420 nm.<sup>21</sup> Furthermore, the addition of a sacrificial electron donor (tetrathiafulvalene; Figure S13 in the SI) or acceptor (methyl viologen; Figures S14 and S15 in the SI) during TA experiments results in bimolecular electron-transfer reactions that support the formation of a charge-separated species in 4.

Three interacting excited states in 4 and 5 (Scheme 1) are proposed. A long-lived bithienyl-localized <sup>3</sup>LC state acts as a reservoir to populate both the <sup>3</sup>MLCT state, which is the only species to decay radiatively, and a <sup>3</sup>ILCT state, in which the electron and hole are localized on the phenanthroline and bithienyl portions of the complex, respectively. The emission at 596 nm for 4 and 5 along with the absence of any <sup>3</sup>MLCT bands in the TA spectra suggests that both the <sup>3</sup>LC and <sup>3</sup>ILCT states are close to, but slightly lower, in energy than the <sup>3</sup>MLCT state. In this case, the triplet reservoir extends the lifetimes of both the <sup>3</sup>MLCT and <sup>3</sup>ILCT states. In most ruthenium-based triads, the lifetime of the second CS state (typically an ILCT state) is on the order of 100–300 ns because back electron transfer is largely unimpeded.<sup>22</sup> Here, two factors extend this Scheme 1. Jablonski Diagram of 4 in CH<sub>3</sub>CN



lifetime into the microsecond regime. First, recombination occurs mainly via the higher-energy, less-populated <sup>3</sup>MLCT state. Second, back electron transfer from the <sup>3</sup>ILCT state to the ground state is nonradiative and a high-energy process ( $-\Delta G^{\circ} \ge$  1.9 eV) that could easily exceed the total back-electron-transfer reorganization energy and put this process in the inverted Marcus region.<sup>8c,d</sup>

These results suggest that further efforts to direct charge separation in ruthenium(II) complexes containing the bithienyl ligand 2 with other acceptor ligands could lead to long-lived excited states in which charge separation is vectorial and readily accessible to follow-on reactions. Charge separation in electropolymerized films may be of significant interest for energy-harvesting applications. Experiments are underway to probe the photophysics of these films and the application of these complexes in photoactive devices.

# ASSOCIATED CONTENT

**Supporting Information.** Synthetic methods and TA and DPV data. This material is available free of charge via the Internet at http://pubs.acs.org.

# AUTHOR INFORMATION

#### **Corresponding Authors**

\*E-mail: macdonn@uta.edu (F.M.M.), mwolf@chem.ubc.ca (M.O.W.).

#### ACKNOWLEDGMENT

We acknowledge the NSERC (M.O.W.), NSF Grant CHE09-11720 (F.M.M. and N.R.T.), Robert A. Welch Foundation Grant Y-1301 (F.M.M.), and the Mountain Equipment Co-op (M.B.M.) for support. We thank Dr. Saeid Kamal (LASIR) for assistance with TA.

### REFERENCES

(1) Nocera, D. G. Chem. Soc. Rev. 2009, 38, 13.

(2) Magnuson, A.; Anderlund, M.; Johansson, O.; Lindblad, P.; Lomoth, R.; Polivka, T.; Ott, S.; Stensjö, K.; Styring, S.; Sundström, V.; Hammarström, L. Acc. Chem. Res. **2009**, *42*, 1899.

(3) Wasielewski, M. R. Chem. Rev. 1992, 92, 435.

(4) (a) Grätzel, M. Nature 2001, 414, 338. (b) Chen, C.-Y.; Chen, J.-G.; Wu, S.-J.; Li, J.-Y.; Wu, C.-G.; Ho, K.-C. Angew. Chem., Int. Ed. 2008, 47, 7342.

(5) (a) Sun, L.; Hammarström, L.; Akermark, B.; Styring, S. *Chem.* Soc. Rev. **2001**, 30, 36. (b) Sykora, M.; Maxwell, K. A.; DeSimone, J. M.; Meyer, T. J. Proc. Natl. Acad. Sci. U.S.A. **2000**, 97, 7687.

(6) (a) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. *Coord. Chem. Rev.* **1988**, *84*, 85. (b) Vos, J. G.; Kelly, J. M. *Dalton Trans.* **2006**, 4869.

(7) Sun, Y.; Liu, Y.; Turro, C. J. Am. Chem. Soc. 2010, 132, 5594.

(8) (a) Borgström, M.; Johansson, O.; Lomoth, R.; Baudin, H. B.; Wallin, S.; Sun, L.; Åkermark, B.; Hammarström, L. *Inorg. Chem.* **2003**, 42, 5173. (b) Danielson, E.; Elliott, C. M.; Merkert, J. W.; Meyer, T. J. J. Am. Chem. Soc. **1987**, 109, 2519. (c) Falkenström, M.; Johansson, O.; Hammarström, L. *Inorg. Chim. Acta* **2007**, 360, 741. (d) Striplin, D. R.; Reece, S. Y.; McCafferty, D. G.; Wall, C. G.; Friesen, D. A.; Erickson, B. W.; Meyer, T. J. J. Am. Chem. Soc. **2004**, 126, 5282.

(9) (a) McClenaghan, N. D.; Leydet, Y.; Maubert, B.; Indelli, M. T.; Campagna, S. *Coord. Chem. Rev.* **2005**, 249, 1336. (b) Manca, P.; Pilo, M. I.; Sanna, G.; Zucca, A.; Bergamini, G.; Ceroni, P. *Chem. Commun.* **2011**, 47, 3413. (c) Yarnell, J. E.; Deaton, J. C.; McCusker, C. E.; Castellano, F. N. *Inorg. Chem.* **2011**, 50, 7820.

(10) Moorlag, C.; Sarkar, B.; Sanrame, C. N.; Bäuerle, P.; Kaim, W.; Wolf, M. O. Inorg. Chem. 2006, 45, 7044.

(11) Wang, X.-y.; Del Guerzo, A.; Schmehl, R. H. J. Photochem. Photobiol, C 2004, 5, 55.

(12) Zhu, S. S.; Kingsborough, R. P.; Swager, T. M. J. Mater. Chem. 1999, 9, 2123.

(13) Ackermann, M. N.; Interrante, L. V. Inorg. Chem. 1984, 23, 3904.

(14) Friedman, A. E.; Kumar, C. V.; Turro, N. J.; Barton, J. K. Nucleic Acids Res. **1991**, 19, 2595.

(15) (a) Damrauer, N. H.; Cerullo, G.; Yeh, A.; Boussie, T. R.;
Shank, C. V.; McCusker, J. K. Science 1997, 275, 54. (b) Wallin, S.;
Davidsson, J.; Modin, J.; Hammarström, L. J. Phys. Chem. A 2005, 109, 4697.

(16) de Melo, J. S.; Silva, L. M.; Arnaut, L. G. J. Chem. Phys. 1999, 111, 5427.

(17) Tyson, D. S.; Henbest, K. B.; Bialecki, J.; Castellano, F. N. J. Phys. Chem. A 2001, 105, 8154.

(18) Ogawa, M.; Balan, B.; Ajayakumar, G.; Masaoka, S.; Kraatz, H.-B.; Muramatsu, M.; Ito, S.; Nagasawa, Y.; Miyasaka, H.; Sakai, K. *Dalton Trans.* **2010**, *39*, 4421.

(19) Amouyal, E.; Homsi, A.; Chambron, J.-C.; Sauvage, J.-P. J. Chem. Soc., Dalton Trans. **1990**, 1841.

(20) Fujitsuka, M.; Sato, T.; Sezaki, F.; Tanaka, K.; Watanabe, A.; Ito, O. J. Chem. Soc., Faraday Trans. **1998**, 94, 3331.

(21) (a) Emmi, S. S.; D'Angelantonio, M.; Beggiato, G.; Camaioni,

N. Radiat. Phys. Chem. 1999, 55, 535. (b) Yagci, Y.; Jockusch, S.; Turro,

N. J. Macromolecules 2007, 40, 4481.

(22) Kumar, R. J.; Karlsson, S.; Streich, D.; Rolandini Jensen, A.; Jäger, M.; Becker, H.-C.; Bergquist, J.; Johansson, O.; Hammarström, L. *Chem.—Eur. J.* **2010**, *16*, 2830.